

Middle East Technical University

Department of Computer Engineering

RECOMMENDER SYSTEM

Software Requirements Specification Document

V1.1

 Dcengo Unchained
 Duygu Kabakcı – 1746064

 Işınsu Katırcıoğlu – 1819432

 Sıla Kaya - 1746122

 Mehmet Koray Kocakaya – 1746189

 December 29, 2013

1

CHANGE HISTORY

Date Revision Comment

24.11.2013 1.0 Created

29.12.2013 1.1 2.1.2. User Interfaces is updated

3.2. Functional Requirements is updated

4.1.1. Data Objects is updated

5.2. State Transition Diagrams is updated

6.1. Team Structure is updated

2

PREFACE

This document contains the Software Requirements Specification (SRS) of a

Recommender System. This document is prepared according to the “IEEE Recommended

Practice for Software Requirements Specifications – IEEE Std 830 – 1998”. Main purpose of this

documentation is to give detailed information about the software requirements and

functionalities of the Recommender System.

 The Recommender System aims to enhance the existing recommendation tools served to

music streaming and downloading tools. In this project, the challenge is to overcome the major

constraints and carry out the basic functionalities of such systems. The target audience who

wants to make use of this system, can find all related requirements information in this document.

It assists the software developer team, the stakeholders and the end users.

The first section gives the definition, purpose and scope of the Recommender System.

The following sections include detailed description and requirements of the project. This

specification is the primary document upon which all the design, implementation, and

test/validation plan will be based.

3

TABLE OF CONTENT

1. INTRODUCTION ... 5

1.1. PROBLEM DEFINITION .. 5

1.2. PURPOSE ... 5

1.3. SCOPE ... 6

1.4. DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 6

1.5. REFERENCES ... 7

1.6. OVERVIEW .. 8

2. OVERALL DESCRIPTION .. 8

2.1. PRODUCT PERSPECTIVE ... 8

2.1.1. SYSTEM INTERFACES ... 9

2.1.2. USER INTERFACES ... 9

2.1.3. HARDWARE INTERFACES... 12

2.1.4. SOFTWARE INTERFACES .. 12

2.1.5. COMMUNICATION INTERFACES ... 14

2.1.6. MEMORY ... 14

2.1.7 OPERATIONS .. 14

2.1.8. SITE ADAPTATION REQUIREMENTS ... 14

2.2. PRODUCT FUNCTIONS ... 14

2.3. CONSTRAINTS ... 15

2.4. ASSUMPTIONS AND DEPENDENCIES .. 15

3. SPECIFIC REQUIREMENTS ... 16

3.1. INTERFACE REQUIREMENTS .. 16

3.2. FUNCTIONAL REQUIREMENTS ... 16

3.2.1. USER USE CASES .. 17

3.2.1.1. USE CASE: GENERATE DATA ..17

3.2.1.2. USE CASE: GET RECOMMENDATION ...18

3.2.2. INTERAGENT.. 18

3.2.2.1. USE CASE: PROVIDE DATASET ..18

3.2.2.2. USE CASE: UPDATE DATASET ..19

4

3.2.2.3. USE CASE: INTEGRATE WEB SERVICE ..19

3.3. NON-FUNCTIONAL REQUIREMENTS ... 20

3.3.1. PERFORMANCE REQUIREMENTS ... 20

3.3.2. SECURITY .. 20

3.3.3. USABILITY ... 20

3.3.4. PORTABILITY ... 20

3.3.5. SAFETY .. 20

3.3.6. OTHER REQUIREMENTS – GNU GPL LICENSE .. 21

4. DATA MODEL AND DESCRIPTION ... 21

4.1. DATA DESCRIPTION ... 21

4.1.1. DATA OBJECTS .. 21

4.1.2. DATA DICTIONARY .. 23

5. BEHAVIORAL MODEL AND DESCRIPTION ... 23

5.1. DESCRIPTION FOR SOFTWARE BEHAVIOR .. 23

5.2. STATE TRANSITION DIAGRAMS... 24

6. PLANNING... 27

6.1. TEAM STRUCTURE .. 27

6.2. ESTIMATION ... 27

6.3. PROCESS MODEL ... 28

7. CONCLUSION ... 29

5

1. INTRODUCTION

1.1. PROBLEM DEFINITION

Recommendation systems are software tools or knowledge discovery techniques that

provide suggestions for items to a user. Items can be music, books, movies, people or social

groups. The aim of these systems is to recommend items that a user is likely to be interested in

and learn more about user preferences and constraints. This project is based on improving the

existing recommendation systems and generating more accurate recommendations for music

streaming and downloading applications with large number of users and tracks.

1.2. PURPOSE

This document provides a detailed description of Software Requirements Specification

(SRS) for Recommendation System. It is prepared according to “IEEE Recommended

Statements for Software Requirements Specification - IEEE Standard 830 – 1998”.

The Software Requirements Specification (SRS) document is intended to provide the

requirements of the Recommender System project and the expectations of the stakeholders. The

document includes the project perspective, data model and constraints of the overall system.

The intended audiences of the document are project managers, developers, testers and

end users.

· Project managers review the document and determine whether the planned system fulfills

the requirements. They notify the developers to fill up missing parts.

· Developers provide consistency by using the documentation.

· Testers use the documentation for verification and validation.

. End users make use of this document to learn about the scope of the system and its

capabilities.

6

1.3. SCOPE

The targeted software product is a Recommendation System. The system makes an

extensive use of user data to come up with reasonable track predictions about user preferences

and there are two main paradigms in this sense: Content-based and collaborative filtering. As a

beginning, the scope of the system is scaled down to collaborative filtering. This type of filtering

is based on collecting and analyzing huge amount of user information; users’ behaviors,

activities, preferences and similarities to other users. The scope consists of determining similar

users according to the similarities between their evaluations of certain track attributes. The

system is aimed to have additional solutions for big data and sparse information. The test data

will be provided from Argedor. The test data for the system are planned to contain millions of

users and irregular data such that some user-track relation remains unknown. The project limits

the improvement of the recommendation system around these challenges and favors accuracy

over performance while giving the final suggestions. As a milestone, the system should follow

the methods to enhance accuracy, the performance enhancements are not included in the scope.

The Recommender System will be a Web Service and the end users will be directly exposed to

the suggestions made for them.

1.4. DEFINITIONS, ACRONYMS AND ABBREVIATIONS

Term Description

API Application Programming Interface

Big Data A collection of data sets so large and complex

that it becomes difficult to process using on-

hand database management tools or traditional

data processing applications

Cold Start The issue that the system cannot draw any

inferences for users or items about which it has

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/User_(computing)

7

not yet gathered sufficient information

IEEE The Institute of Electrical and Electronical

Engineers

OS Operating System

RMSE Root Mean Square Error

UML Unified Modeling Language

Web Service A software function provided at a network

address over the web or the cloud

UI User Interface

1.5. REFERENCES

[1] Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems,

22(1), 5-53. doi:10.1145/963770.963772

[2] IBM. (n.d.). Portability and Interoperability. Retrieved October 27, 2013, from

http://www.ibm.com/developerworks/webservices/library/ws-port/

[3] IEEE. (1998). IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements

Specifications. IEEE Computer Society.

[4] Rubens, N., Kaplan, D., & Sugiyama, M. (2011). Active Learning in Recommender Systems.

In P. B. Kantor, F. Ricci, L. Rokach & B. Shapira (Eds.), Recommender Systems Handbook (pp.

735-767). New York, USA: Springer.

[5] Sparx Systems. (2000). UML 2 Tutorial. Retrieved October 26, 2013, from

http://www.sparxsystems.com/resources/uml2_tutorial/

[6] Peter Neubauer.(2009). Neo4j vs Hadoop. Retrieved October 27, 2013, from

http://lists.neo4j.org/pipermail/user/2009-April/001118.html

http://www.ibm.com/developerworks/webservices/library/ws-port/
http://www.sparxsystems.com/resources/uml2_tutorial/
http://lists.neo4j.org/pipermail/user/2009-April/001118.html

8

1.6. OVERVIEW

 This document includes six chapters:

● Overall description

● Specific requirements

● Data Model and Description

● Behavioral Model and Description

● Planning

● Conclusion

The software requirements begin with the overall description of the project. The product

perspective, major functions and constraints are covered briefly. The software and hardware

interfaces are stated in the next section as well. The following chapter gives the detailed

requirements and functionalities of the software product. The functional and nonfunctional

requirements are explained broadly. The design model and design constraints are mentioned

extensively. One complete chapter is reserved for the data description and the behavioral model

separately. SRS document involves UML diagrams for the project design. The use case, class

and state diagrams are depicted in related sections. The documentation is finalized with the

estimated schedule and team work for the project.

2. OVERALL DESCRIPTION

2.1. PRODUCT PERSPECTIVE

 Recommendation system is a software tool that provides suggestions for items to a user.

Our recommendation system is a component of a larger system which is a music streaming and

downloading web application. The application integrates our system to main web application as a

web service. Web services extend the World Wide Web infrastructure to provide the means for

software to connect to other software applications. Our web service helps existing larger system

to increase in usage of system by accurate suggestions. Moreover, this web service is free and

open source with a GNU General Public License (GPL).

Music downloading and listening service is supported by Argedor. This service provides

users with the legal right of accessing music files. It also enables the users to download music in

mp3 format in case of purchasing music packages. The service provides the opportunity of

9

displaying latest news and music lists along with going over the lyrics and album information.

Moreover, there are two types of track lists, professional lists provided by application and user

lists created by individual user. Users can display both two types of lists. All these actions

generate dataset to our system for accurate recommendations based on users' and items'

similarities. ARGEDOR -supporter company- acts like an interagent between users and our

recommendation system. The dataset is the most important part of our system therefore main

system's existence and wide usage are important for generating recommendations on our system.

The external interface and the interconnection between the large system and the Recommender

System can be seen in Figure 1.

Figure 1: Block diagram

2.1.1. SYSTEM INTERFACES

There is just one system requirement which is Internet Access.

2.1.2. USER INTERFACES

 Music streaming and downloading web application have a user-friendly GUI to provide

ease of use and effectiveness to the users with different roles. Besides, our web service is added

to web application. Therefore, we are not going to make new user interfaces for the application.

Our web service will be integrated to web application and the recommendation result will be

displayed through web application GUI. The only interface which we will implement is web

service interface to display recommendation for companies using this web service.

10

 Figure 2: Web Service Interface

 In Web Service Interface, there are four pages Home, Add Data, Get Started and Contact

(Figure 2). This page (Get Started) contains a text field and a button. The user of the system who

want to get recommendation fill the text field with proper user id. After s/he fill the text field and

click the submit button, new page (Figure 3) is opened and recommendations are shown in this

page. It contains a table with three columns which are Song Name, Performer Name and Album

Name. Recommendations are listed in the table according to their song, performer and album

names. The row number of the table can change according to how many recommendations are

given to the user.

11

 Figure 3: Web Service Interface

 In Add Data page (Figure 4), there are five segments. The user of the page should fill

these five segments with text file. Song, Performer and Album document include information

about them. Map document (relationship between song, performer and album) matches these

three items. User Logs Document contains all of the information about played or downloaded

songs. These five documents must be formed according to dataset provided by Argedor. When

Submit button is pressed, database is updated with information in these text files. This page is

created to update data and add new information when new log, song, album, performer and map

data is created.

12

 Figure 4: Web Service Interface

2.1.3. HARDWARE INTERFACES

 Recommendation system offers accessibility to a great extent by storing your collection

data on cloud. This brings out the requirement of a network interface on the device. User should

have a device with valid internet connection, Wi-Fi or 3G, to be able to keep collection

synchronized with cloud.

2.1.4. SOFTWARE INTERFACES

The data of the project is organized in a graph because the aim is to handle big data. A

graph is a collection of nodes and edges (relationships) that connect node pairs. Key-value pairs

are defined on nodes and edges. This is a powerful way of representing relations in the project

data. In a graph database, relationships are first-class citizens. They connect two nodes. These

two nodes and relationships can hold excessive amount of key-value pairs. Graph database stores

data in a graph, the most generic form of data structures, capable of elegantly representing any

kind of data in a highly accessible way. Graph database is approximately 1000 times faster for

many queries on connected data than a relational database. Moreover, graph database is more

intuitive for modeling many domains as a graph. Because of these reasons, graph database will

be used in the project. Neo4j is a Java based open source graph database and it is the most

13

popular graph database. Its last version Neo4j 1.9, which will be used for our system, was

released on 2007. Neo4j is well suited for many web use cases like metadata annotations, social

networks, tagging, wikis and other network-shaped data sets. As mentioned before, it is a graph

oriented model for data representations. Instead of static or rigid tables, columns and rows, we

can work with a flexible graph network consisting of nodes, edges (relationships) and properties.

It has supported many programming languages like Python, Ruby, Java, .Net, Perl, JavaScript

etc. Neo4j is chosen instead of Apache Hadoop due to these reasons. Hadoop is mostly

concerned with relatively flat data structures and it is extremely fast and scalable regarding

retrieval of simple objects, like values, documents or even objects. However, if one should do

deeper traversal of e.g. a graph, then it is required to retrieve the nodes for every traversal step

(very fast) and then match them in some other manner (e.g. in Java or so) – slow. Whereas,

Neo4j is built around the concept of “deep” data structures. This gives almost an unlimited

flexibility regarding the layout of the data, domain object graph and very fast deep traversals

(hops over several nodes) since they are handled natively by the Neo4j engine down to the

storage layer and not the client node. The drawback is that for huge amounts (over one billion

nodes) the clustering and partitioning of the graph becomes non-trivial, which is one of the areas

this project is based on [6].

 Java will be used as the programming language for this project. The last versions of Java

Standard Edition 7 was released on July 28, 2011 and Java Enterprise Edition 7 was released on

May 28, 2013. As mentioned before, Neo4j is implemented via Java, so finding and using Neo4j

libraries for Java will be easier. This is the most important reason why we choose Java to

implement the project. Another reason is Java’s performance. Java platform achieves superior

performance by adopting a scheme by which the interpreter can run at full speed without needing

to check the run-time environment.

 Another software product which will be used is Amazon Elastic Compute Cloud (EC2). It

is designed to make web-scale computing easier for developers. EC2 allows users to rent virtual

computers on which to run their own computer applications. EC2 was developed on August 25,

2006 by Amazon.com.

14

2.1.5. COMMUNICATION INTERFACES

 This system is a web application; therefore network connection with TCP/IP protocol is

necessary.

2.1.6. MEMORY

 At the beginning of the Recommendation System project, we will be using our local

computers. Therefore minimum 2 GB (64-bit) RAM and 20 GB (64-bit) hard disk space will be

needed.

2.1.7 OPERATIONS

 Our web service makes recommendations even if the user hasn’t played any tracks. This

is cold start and the recommendation operations related to this phase are not user specific. For

gaining better recommendations, user shall search, listen or download tracks. These

recommendations are specific for users.

2.1.8. SITE ADAPTATION REQUIREMENTS

 We are going to study with big data on this project. However, our local computers restrict

us and we cannot deal with big data. Therefore, we need to deploy our project on a web server.

2.2. PRODUCT FUNCTIONS

Recommendation System is composed of the following fundamental features:

 Users:

 Generate Data

 Get Recommendation

 Interagent:

 Get Recommendation

 Provide Dataset

 Update Dataset

 Integrate Web Service

15

2.3. CONSTRAINTS

 Recommendation systems suffer from three major problems; cold start, huge data and

sparsity. Cold start is a potential problem in computer-based information systems which involve

a degree of automated data modeling. Specifically, it concerns the issue that the system cannot

draw any inferences for users or items about which it has not yet gathered sufficient information.

There are basically two types of this problem. The first one occurs when a new user starts using

the system. The system knows little about their preferences and it is necessary to pick some

training points for rating so that the system begins learning what the user wants [4]. The second

type occurs when a new product is introduced to the system. Again it is essential to rate this item

in order to quickly improve the prediction accuracy about it [4].

The next problem is huge data. In many of the environments that these systems make

recommendations in, there are millions of users and products. It is quite a challenge to produce

high quality recommendations and perform many recommendations per second for millions of

customers and items. Thus, a large amount of computation power is often necessary to calculate

recommendations. Moreover, at the beginning of the project, we are going to study on our local

computers. We are not going to manage with huge data because we have limited memory. After

we start using server, we are going to practice with big data.

The third problem is sparsity. Users that are very active contribute to the rating for a few

number of items available in the database and even very popular items are rated by only a few

number of users available in the database. Because of sparsity, it is possible that the similarity

between two users cannot be defined, rendering collaborative filtering useless. The rating matrix

R, which is mentioned in the previous section, might be full of missing entries since many users

vote for just a few of the items.

2.4. ASSUMPTIONS AND DEPENDENCIES

Our end product is planned to be a REST-compliant Web service. There must be Internet

connection.

16

3. SPECIFIC REQUIREMENTS

3.1. INTERFACE REQUIREMENTS

 The user interface of our recommendation system has already been created and used in

larger music streaming and downloading system. Therefore, we won't implement any user

interfaces but our recommendation system can be modified in larger system and related

interfaces. We only implement a simple user interface for showing system recommendations.

This user interface gives chance to display recommendations before integration of web-service

and existing music streaming and downloading web application. In main system, user logins first

and starts playing and downloading tracks which are created our recommender web service's

data. Therefore, Output of our recommendation system is shown in integrated main web

application's interface.

3.2. FUNCTIONAL REQUIREMENTS

This section encapsulates the major software functions and data flow among the participants of

the system. The participants include the user and the interagent. The user, in other words the end-

user, is the person that makes use of music streaming and downloading web application. The

interagent is the R&D team of ARGEDOR and this actor provides the necessary tools to

maintain the connection between the user and our system. The overall use case diagram is

illustrated in Figure 5.

17

Figure 5: Use Case diagram

3.2.1. USER USE CASES

3.2.1.1. USE CASE: GENERATE DATA

 Figure 6: Generate Data

User can listen or download track from music streaming and downloading web

application. Track information is collected according to album information, artist information,

time of action, user information, rating value and channel. This information will fill the database.

18

Every track has unique album, artist, time of action, user, rating value and channel. So, this

listening process will generate practical data (Figure 6).

3.2.1.2. USE CASE: GET RECOMMENDATION

 Figure 7: Get Recommendation

System can suggest track(s) as a recommendation to user based on the dataset which is

refined by users' collaborative approach. The main function of our system shows these tracks

based on recommendation algorithms. When a user chooses recommendation part in application,

he/she will get the most important point of the project recommendation and project gives user a

chance to choose track through recommended tracks according to his/her own previous choices

(Figure 7).

3.2.2. INTERAGENT

3.2.2.1. USE CASE: PROVIDE DATASET

Figure 8: Provide Dataset

 Interagent provides dataset, in other words the big data, in cooperation with music

streaming and downloading application (Figure 8).

19

3.2.2.2. USE CASE: UPDATE DATASET

Figure 9: Update Dataset

 Music streaming and downloading web application collects 1 million data every day.

Interagent also delivers this 1 million data to our web service. These updates are necessary for

making more accurate recommendations (Figure 9).

3.2.2.3. USE CASE: INTEGRATE WEB SERVICE

Figure 10: Integrate Web Service

 After the recommendation system project is completed, inter agent integrate this web

service to music streaming and downloading web application. Then, users will access to our web

service and receive recommendations through the web application (Figure 10).

20

3.3. NON-FUNCTIONAL REQUIREMENTS

3.3.1. PERFORMANCE REQUIREMENTS

 Performance of making recommendation and updating this recommendation is very

important issue because we are aiming to make the system real-timed. In other words, the system

should have enough speed that users of the system cannot realize the processing of data. In order

to make system real-timed, at the end of listening track or after purchasing track system shall

update recommendations. Besides, our web service should handle multiple users at the same

time.

3.3.2. SECURITY

 Database has to be reached securely and its data should not be broken. It also should not

change except interagent updates. Moreover, since our dataset contain some personal

information of user such as userid, tracks he/she listened, security design is important in the web

service.

3.3.3. USABILITY

 The scope of the product is widespread. The only requirement is using music streaming

and downloading web application. Besides, people from every age shall easily use the system.

3.3.4. PORTABILITY

The role of Web services in enterprise application integration scenarios is to make it

easier to tie applications running on heterogeneous platforms together; to help them overcome

the communication gaps that arise from decisions to use one development environment over

another; and to help abstract such choices so that business developers no longer have to keep

track of what operating system or what development environment or what technology decisions

have been made [2]. Since the project we work on is a web service, it is portable.

3.3.5. SAFETY

 No safety requirements have been identified.

21

3.3.6. OTHER REQUIREMENTS – GNU GPL LICENSE

The project will be released under GNU General Public License, which allows the use,

change and redistribution of the software freely. The philosophy of this license is applied to this

recommendation system to achieve the greatest possible use and development by public.

4. DATA MODEL AND DESCRIPTION

4.1. DATA DESCRIPTION

4.1.1. DATA OBJECTS

 This subsection of the document explains system's classes and their relations with each

other. Most of the system functionalities are represented in Figure 11.

Figure 11: Class Diagram

 User: This class represents the user entity and it keeps a unique id.

 Song: This class represents the song entity and it has the fields defined in the previous

section. It has an aggregation association with Album and Performer classes. It contains

22

AlbumInfo and PerformerInfo fields. An Album instance or a Performer instance can be mapped

to one or more Song instances.

 Album: This class represents the album entity and it has the fields defined in the previous

section.

 Performer: This class represents the performer entity and it has the fields defined in the

previous section.

 Listen: This class is a group of instances that represent listening action. Each time a new

log is processed, an instance of this class is created. Its fields are defined in the previous section.

This class has composition association with User and Song classes. It contains user and song

fields.

 Network: This class encapsulates database related methods and it keep a

GraphDatabaseService object which is the Neo4j database object. It has some specific methods

such as createDatabase, registerShutdownHook,clearDb, createNode, createRelationship

methods to construct/remove a database and add/delete nodes. The similarity construction

requires the traversal of the graph database which is done via depthFirst, breadthFirst and

shortestPath methods. The similar user and recommended songs are determined via

findNeighbor method.

 Recommendation: This class represents the recommendation object to be returned to the

external system. It contains either a cluster of users that are found similar or a cluster of songs.

The user to which this recommendation will be given is kept inside target field. This class has a

composition association with the Song class and contains recommendedSong field. It also has an

aggregation association with RecommendationList class. Whenever an instance of

RecommendationList is deleted, the corresponding instances of Recommendation class still exist.

 RecommendationList: This class represents the group of recommendations given to a

specific user. It has a unique id. This class has a composition association with User class.

23

4.1.2. DATA DICTIONARY

Term Definition

userID User ID are not same with real ones, company change

them in order to provide security and it is unique

songID songID is used for specific track

albumID albumID represents a unique album containing tracks

artistID This attribute specify the artist uniquely

timeOfAction timeOfAction shows the date and time which user

download or listen track

ratingValue This attribute is estimated according to that user

download or listen track

channel Channel means that user listening track from browser,

him/her own list or another user list

5. BEHAVIORAL MODEL AND DESCRIPTION

 This section provides the overall behavior of the system. Major events and states are

displayed in a state chart diagram.

5.1. DESCRIPTION FOR SOFTWARE BEHAVIOR

The state chart in Figure 14 illustrates the behavior of the Recommender System within a

larger system. The larger system is a stand-alone music application that our software product is

going to be integrated to. The recommender system is shown as an independent sub state. The

states that remain outside the Recommender state are out of the scope of this project. However,

these states and related events are necessary for our software product to proceed. The pre states

24

and post states of the Recommender state are assumed to be completely encountered. The host

application takes user input through the downloaded, played, rated and search track information.

Records for each user are formed and they are supplied to our Web Service. The behavior of our

Web Service mainly resides on database transactions. Since the project team uses graph

database, the system traverses the large graph, which is actually the storage and notation method

of the big user data, to find out the closest match to a user or to a track. After evaluating how

successful this match is, the recommendation is presented to the user.

5.2. STATE TRANSITION DIAGRAMS

 The state chart diagram in Figure 13 shows all the states, triggers and conditions for each

transition and related events. The trigger induces a state change given that the condition is

satisfied. The conditions are written inside the square brackets.

 As soon as the system is initialized, User Login state is triggered. It is followed by the

login action. If the login information is valid, the user is directed to the actions involving tracks.

The user can either download a track, play a track, rate a track or search a track. These states are

the main sources for user data. The transition from these states is a synchronized action in order

to obtain a complete user data. If the user data is valid, User Input Generation state is initiated.

This state has a self-transition due to the big data condition. The project relies on the assumption

that the project model is consistent with big data. It is indicated by the Handle Big Data event.

As long as there are millions of users and tracks in the system, this state is instantiated again.

When the dataset is completed, the actual Recommendation sub state is triggered. The arrival of

new data triggers the database update on the condition that the new data are valid. The insertion

event occurs at this point. New data are inserted into the graph database. New nodes and edges

are formed inside the huge graph. The next state is Similarity Construction. The event related to

this transition is the traversal of graph database. Instead of writing queries in a relational

database, the recommender system requires traversing the graph nodes to find the most similar

users. Get Recommendation state is the most crucial part of this set of behaviors. The closest

track(s) according to the previous preferences of a user is/are determined in this state. As the last

state, the output is displayed and the Recommender State is finalized.

25

In the Algorithm Evaluation State, the algorithm is tested on the user data in offline

mode. Some part of the data is used for training while the rest is used for testing. RMSE (Root

mean square error) is used in order to evaluate the accuracy of the system. It is a measure of how

accurate the recommended songs are according to the actual logs. The threshold value for RMSE

is currently fixed as 0.7. If the error gets higher, the system fails.

26

27

6. PLANNING

6.1. TEAM STRUCTURE

 The four members of the Dcengo Unchained team are Duygu Kabakcı, Işınsu

Katırcıoğlu, Sıla Kaya, Koray Kocakaya. The team structure is as follows:

Task Members

Graph Traversal Algorithm Component Duygu Kabakcı, Işınsu Katırcıoğlu

Neo4j Database Component Duygu Kabakcı, Işınsu Katırcıoğlu

Neo4j API Component Duygu Kabakcı, Işınsu Katırcıoğlu

Machine Learning Algorithm Component Sıla Kaya, Mehmet Koray Kocakaya

UI Component Sıla Kaya, Duygu Kabakcı

Weka API Component Sıla Kaya, Mehmet Koray Kocakaya

Evaluator Component Mehmet Koray Kocakaya, Işınsu Katırcıoğlu

Recommender Component Sıla Kaya, Mehmet Koray Kocakaya

6.2. ESTIMATION

Estimation Date Task

04.10.2013 Deciding Project

13.10.2013 Project Idea Proposal

22.10.2013 Elevator Pitch

30.10.2013 Software Requirements Specification (SRS)

30.10.2013 - 07.11.2013 Researching Requirement Systems and

Tools

28

07.11.2013 - 14.11.2013 Trying Software Tools

14.11.2013 - 18.11.2013 Documenting Design Report

18.11.2013 Design Report

18.11.2013 - 04.12.2013 Trying Software Tools

04.12.2013 - 16.12.2013 Documenting Updated Reports

16.12.2013 Updated Reports

16.12.2013 - 20.01.2013 Implementing Base Recommendation

System

6.3. PROCESS MODEL

We will apply agile model for our recommendation system so that system can respond

quickly to changing requirements without excessive rework. Agile method is based on an

iterative approach, each iteration involves planning, requirements analysis, design,

implementation, testing. Each iteration takes approximately four weeks. Once we will generate

the initial version of recommendation system, then our system will be developed according to

accuracy of recommendations, performance results on scaled big data.

29

7. CONCLUSION

 This Software Requirement Specification document is prepared to give requirement

details of the project “Recommender System”. The detailed functional and nonfunctional

requirements, system, user, software and hardware interfaces, data and behavioral model are

stated in an extended outline. This document will be helpful at constituting a basis for design and

development of the system to be developed.

30

This page intentionally left blank

